EconPapers    
Economics at your fingertips  
 

Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations

Omar Abu Arqub and Banan Maayah

Chaos, Solitons & Fractals, 2019, vol. 126, issue C, 394-402

Abstract: This paper focuses on providing a novel high-order algorithm for the numerical solutions of fractional order Volterra integro-differential equations using Atangana–Baleanu approach by employing the reproducing kernel approximation. For this purpose, we investigate couples of Hilbert spaces and kernel functions, as well as, the regularity properties of Atangana–Baleanu derivative, and utilize that the representation theorem of its solution. To remove the singularity in the kernel function, using new Atangana–Baleanu approach the main operator posses smoothing solution with a better regularity properties and the reproducing kernel algorithm is designed for the required equation. The convergence properties of the proposed algorithm are also studied which proves that the new strategy exhibits a high-order of convergence with decreasing error bound. Some numerical examples of single and system formulation illustrate the performance of the approach. Summary and some notes are also provided in the case of conclusion and highlight.

Keywords: Atangana–Baleanu fractional approach; Reproducing kernel algorithm; Volterra integro-differential equation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919302759
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:126:y:2019:i:c:p:394-402

DOI: 10.1016/j.chaos.2019.07.023

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:126:y:2019:i:c:p:394-402