EconPapers    
Economics at your fingertips  
 

Inhibition enhances the coherence in the Jacobi neuronal model

D’Onofrio, Giuseppe, Petr Lansky and Massimiliano Tamborrino

Chaos, Solitons & Fractals, 2019, vol. 128, issue C, 108-113

Abstract: The output signal is examined for the Jacobi neuronal model which is characterized by input-dependent multiplicative noise. The dependence of the noise on the rate of inhibition turns out to be of primary importance to observe maxima both in the output firing rate and in the diffusion coefficient of the spike count and, simultaneously, a minimum in the coefficient of variation (Fano factor). Moreover, we observe that an increment of the rate of inhibition can increase the degree of coherence computed from the power spectrum. This means that inhibition can enhance the coherence and thus the information transmission between the input and the output in this neuronal model. Finally, we stress that the firing rate, the coefficient of variation and the diffusion coefficient of the spike count cannot be used as the only indicator of coherence resonance without considering the power spectrum.

Keywords: Coherence resonance; Signal-to-noise ratio; Leaky integrate-and-fire neuron model; Multiplicative noise (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919302929
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:128:y:2019:i:c:p:108-113

DOI: 10.1016/j.chaos.2019.07.040

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:128:y:2019:i:c:p:108-113