Transportation of radiative energy in viscoelastic nanofluid considering buoyancy forces and convective conditions
M. Waqas,
M. Ijaz Khan,
T. Hayat,
M. Mudassar Gulzar and
A. Alsaedi
Chaos, Solitons & Fractals, 2020, vol. 130, issue C
Abstract:
These days, the most important requirement of contemporary technological activities is extraordinary performance chilling for standard construction. Weaker thermal transference is meaningful issue to keep the extraordinary performance chilling throughout manufacturing systems. This difficulty can be determined by the nanoparticles submersion. Thus, a rheological model featuring thermophoretic and Brownian diffusions is introduced to formulate the two-dimensional viscoelastic (second-grade) nanoliquid flow considering mixed convection and magnetohydrodynamics. Modeling subject to viscous dissipation, convective conditions, Joule heating, heat absorption/generation, stratifications and radiation aspects is presented. Non-dimensionalization process is performed introducing apposite variables. Homotopy algorithm is opted for nonlinear analysis. Graphs are exhibited for interpretation of distinct variables influence against dimensionless quantities. We found opposing behavior for radiation and thermal stratification variables against thermal field.
Keywords: Mixed convection; Viscoelastic nanoliquid; Viscous dissipation; Thermal radiation; Heat absorption/generation; Joule heating (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791930356X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:130:y:2020:i:c:s096007791930356x
DOI: 10.1016/j.chaos.2019.109415
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().