Transmission dynamics of tuberculosis with multiple re-infections
Dhiraj Kumar Das,
Subhas Khajanchi and
T.K. Kar
Chaos, Solitons & Fractals, 2020, vol. 130, issue C
Abstract:
We propose and analyze an epidemic model describing the transmission dynamics of tuberculosis (TB) with the possibilities of re-infections and fast progression of the disease. The qualitative behavior of the system is studied, covering several distinct aspects of disease transmission. The epidemiological threshold, known as the basic reproduction number, R0, is determined using the next-generation matrix approach. It is observed that the present epidemic system may exhibit a backward bifurcation for R0 < 1. Therefore, we may conclude that reducing R0 to less than unity is not sufficient for eradication of tuberculosis. However, reducing R0 to less than R0*, the sub-threshold obtained in the absence of recurrent TB, it is possible to eradicate the disease. We notice that a sufficient proportion of newly infected individuals developing a direct progression to the active stage can overcome the possibility of backward bifurcation. We also insight the qualitative nature of backward bifurcation with variation in re-infection level. It is found that increasing the level of re-infections makes the disease eradication more challenging. The theoretical investigations are being supplemented by numerical simulations whenever necessary.
Keywords: Tuberculosis model; Exogenous re-infection; Fast progression; Backward bifurcation; Global stability (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919303960
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303960
DOI: 10.1016/j.chaos.2019.109450
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().