Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays
Zizhen Zhang,
Soumen Kundu,
Jai Prakash Tripathi and
Sarita Bugalia
Chaos, Solitons & Fractals, 2020, vol. 131, issue C
Abstract:
Infectious diseases have been ranked in the top ten causes of death by WHO in 2016 and despite of availability of various types of vaccines and antibiotics, a huge population is still dying by infectious diseases every day. This may happen due to, several reasons like, resistance of pathogens to antibiotics, improper hygiene and various types of difficulties in vaccination. It has also inspired mathematical modelers to develop dynamical systems predicting the infections in long run. During their spread in a particular population, infectious diseases show various kind of delays which essentially affects the dynamics. In this paper, a susceptible - vaccinated- exposed - infectious - removed (SVEIR) epidemic model is developed with vaccination and two discrete time delays. The first time delay has been incorporated for the time period used to cure the infectious population and another time delay denote the temporary immunity period. The existence of solution and its boundedness have been established. The local stability of disease free equilibrium in respect of both the delays have been discussed explicitly and we have found threshold values of both delay parameters for the local stability of disease free equilibrium. We have also established the local stability of interior equilibrium following the existence of Hopf-bifurcation. Theoretical result shows that considered model system undergoes a Hopf-bifurcation around the interior equilibrium when the time delay due to time period used to cure the infectious population crosses a threshold value. We have also discussed the direction and stability of delay induced Hopf bifurcation using normal form theory and centre manifold theorem. In presence of delay, by constructing a Lyapunov function, local asymptotic stability of the positive equilibrium point is discussed. The length of delay has been estimated to preserve the stability using Nyquist criterion. With the suitable choices of the parameters, some numerical simulations have been presented in the support of our analytical results.
Keywords: Delay; Hopf bifurcation; Stability; Periodic solution; Nyquist criteria (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919304291
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919304291
DOI: 10.1016/j.chaos.2019.109483
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().