EconPapers    
Economics at your fingertips  
 

Magnetic field effect on a fractionalized blood flow model in the presence of magnetic particles and thermal radiations

C.B. Tabi, P.A.Y. Ndjawa, T.G. Motsumi, C.D.K. Bansi and T.C. Kofané

Chaos, Solitons & Fractals, 2020, vol. 131, issue C

Abstract: The presence of magnetic particles is considered in a magneto-hydrodynamic blood flow through a circular cylinder. The fluid inside the tube is acted by an oscillating pressure gradient and an external constant magnetic field. The blood temperature is assumed to change with the blood and particle velocities, and the whole study is based on a mathematical model that includes Caputo fractional-order derivatives. Solutions for the particle and blood velocities, and blood temperature distribution, are obtained via the combination of the Laplace and Hankel transformation methods. Effects of the fractional-order parameter and magnetic field are addressed using numerical simulations. Results show that the applied magnetic field reduces the velocities of the fluid and particles, which remarkably affects the blood temperature. This is obvious for short and long time intervals. However, under long time intervals, particles seem to be accelerated, but their velocity is suitably controlled by the fractional-order parameter which also monitors the increase in blood temperature.

Keywords: Magnetohydrodynamics; Fractional derivatives; Magnetic field; Magnetic particles (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919304916
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919304916

DOI: 10.1016/j.chaos.2019.109540

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919304916