EconPapers    
Economics at your fingertips  
 

A comparative study of heat transfer analysis of MHD Maxwell fluid in view of local and nonlocal differential operators

M.B. Riaz and N. Iftikhar

Chaos, Solitons & Fractals, 2020, vol. 132, issue C

Abstract: In this paper, a comparative analysis is carried out to study the unsteady flow of a MHD Maxwell fluid in the presence of Newtonian heating near a vertical plate. Maxwell fluid is modeled for integer order derivative, Caputo (C), Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional-time derivatives. The Laplace transform, inversion algorithm and the convolution theorem are used in this paper to derive solutions to predict the behavior of temperature and velocity. To see the effectiveness of the differential operator, especially the effect of each fractional order, graphical study is carried out in order to show effect of magnetic effect (M) and Maxwell fluid parameter (λ) on temperature and velocity profiles for C, CF and ABC. A comparison is made for C, CF and ABC models for temperature and velocity in tabular form.

Keywords: Fractional-time derivatives; Inversion algorithm; Laplace transform; Local and nonlocal kernels; Maxwell fluid; Magnetic effect; Newtonian heating (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919305132
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305132

DOI: 10.1016/j.chaos.2019.109556

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305132