EconPapers    
Economics at your fingertips  
 

Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system

Shatha Hasan, Ahmad El-Ajou, Samir Hadid, Mohammed Al-Smadi and Shaher Momani

Chaos, Solitons & Fractals, 2020, vol. 133, issue C

Abstract: In this article, a class of population growth model, the fractional nonlinear logistic system, is studied analytically and numerically. This model is investigated by means of Atangana-Baleanu fractional derivative with a non-local smooth kernel in Sobolev space. Existence and uniqueness theorem for the fractional logistic equation is provided based on the fixed-point theory. In this orientation, two numerical techniques are implemented to obtain the approximate solutions; the reproducing-kernel algorithm is based on the Schmidt orthogonalization process to construct a complete normal basis, while the successive substitution algorithm is based on an appropriate iterative scheme. Convergence analysis associated with the suggested approaches is provided to demonstrate the applicability theoretically. The impact of the fractional derivative on population growth is discussed by a class of nonlinear logistical models using the derivatives of Caputo, Caputo-Fabrizio, and Atangana-Baleanu. Using specific examples, numerical simulations are presented in tables and graphs to show the effect of the fractional operator on the population curve as. The present results confirm the theoretical predictions and depict that the suggested schemes are highly convenient, quite effective and practically simplify computational time.

Keywords: Atangana-Baleanu derivative; Generalized Mittag-Leffler function; Nonlinear fractional logistic equation; Schmidt orthogonalization process; Reproducing kernel approach (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920300230
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:133:y:2020:i:c:s0960077920300230

DOI: 10.1016/j.chaos.2020.109624

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:133:y:2020:i:c:s0960077920300230