EconPapers    
Economics at your fingertips  
 

A new megastable nonlinear oscillator with infinite attractors

Gervais Dolvis Leutcho, Sajad Jafari, Ibrahim Ismael Hamarash, Jacques Kengne, Zeric Tabekoueng Njitacke and Iqtadar Hussain

Chaos, Solitons & Fractals, 2020, vol. 134, issue C

Abstract: Dynamical systems with megastable properties are very rare in the literature. In this paper, we introduce a new two-dimensional megastable dynamical system with a line of equilibria, having an infinite number of stable states. By modifying this new system with temporally-periodic forcing term, a new two-dimensional non-autonomous nonlinear oscillator capable to generate an infinite number of coexisting limit cycle attractors, torus attractors and, strange attractors is constructed. The analog implementation of the new megastable oscillator is investigated to further support numerical analyses and henceforth validate the mathematical model.

Keywords: Forced oscillator; Megastability; Self-excited attractors; Coexisting attractors (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920301053
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:134:y:2020:i:c:s0960077920301053

DOI: 10.1016/j.chaos.2020.109703

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:134:y:2020:i:c:s0960077920301053