Multiobjective optimization inspired by behavior of jellyfish for solving structural design problems
Jui-Sheng Chou and
Dinh-Nhat Truong
Chaos, Solitons & Fractals, 2020, vol. 135, issue C
Abstract:
This study develops a Multi-Objective Jellyfish Search (MOJS) algorithm to solve engineering problems optimally with multiple objectives. Lévy flight, elite population, fixed-size archive, chaotic map, and the opposition-based jumping method are integrated into the MOJS to obtain the Pareto optimal solutions. These techniques are employed to define the motions of jellyfish in an ocean current or a swarm in multi-objective search spaces. The proposed algorithm is tested on 20 multi-objective mathematical benchmark problems, and compared with six well-known metaheuristic optimization algorithms (MOALO, MODA, MOEA/D, MOGWO, MOPSO, and NSGA-II). The results thus obtained indicate that the MOJS finds highly accurate approximations to Pareto-optimal fronts with a uniform distribution of solutions for the test functions. Three constrained structural problems (25-bar tower design, 160-bar tower design, and 942-bar tower design) of minimizing structural weight and maximum nodal deflection were solved using MOJS. The visual analytics demonstrates the merits of MOJS in solving real engineering problems with best Pareto-optimal fronts. Accordingly, the MOJS is an effective and efficient algorithm for solving multi-objective optimization problems.
Keywords: Metaheuristics; Algorithm design; Multi-objective jellyfish search; Pareto dominance; Benchmark functions; Structural design optimization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920301405
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:135:y:2020:i:c:s0960077920301405
DOI: 10.1016/j.chaos.2020.109738
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().