EconPapers    
Economics at your fingertips  
 

Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil

Matheus Henrique Dal Molin Ribeiro, Ramon Gomes da Silva, Viviana Cocco Mariani and Leandro dos Santos Coelho

Chaos, Solitons & Fractals, 2020, vol. 135, issue C

Abstract: The new Coronavirus (COVID-19) is an emerging disease responsible for infecting millions of people since the first notification until nowadays. Developing efficient short-term forecasting models allow forecasting the number of future cases. In this context, it is possible to develop strategic planning in the public health system to avoid deaths. In this paper, autoregressive integrated moving average (ARIMA), cubist regression (CUBIST), random forest (RF), ridge regression (RIDGE), support vector regression (SVR), and stacking-ensemble learning are evaluated in the task of time series forecasting with one, three, and six-days ahead the COVID-19 cumulative confirmed cases in ten Brazilian states with a high daily incidence. In the stacking-ensemble learning approach, the CUBIST regression, RF, RIDGE, and SVR models are adopted as base-learners and Gaussian process (GP) as meta-learner. The models’ effectiveness is evaluated based on the improvement index, mean absolute error, and symmetric mean absolute percentage error criteria. In most of the cases, the SVR and stacking-ensemble learning reach a better performance regarding adopted criteria than compared models. In general, the developed models can generate accurate forecasting, achieving errors in a range of 0.87%–3.51%, 1.02%–5.63%, and 0.95%–6.90% in one, three, and six-days-ahead, respectively. The ranking of models, from the best to the worst regarding accuracy, in all scenarios is SVR, stacking-ensemble learning, ARIMA, CUBIST, RIDGE, and RF models. The use of evaluated models is recommended to forecasting and monitor the ongoing growth of COVID-19 cases, once these models can assist the managers in the decision-making support systems.

Keywords: ARIMA; COVID-19; Forecasting; Decision-making; Machine learning; Time-series (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (38)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920302538
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:135:y:2020:i:c:s0960077920302538

DOI: 10.1016/j.chaos.2020.109853

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:135:y:2020:i:c:s0960077920302538