Time series forecasting of COVID-19 transmission in Canada using LSTM networks
Vinay Kumar Reddy Chimmula and
Lei Zhang
Chaos, Solitons & Fractals, 2020, vol. 135, issue C
Abstract:
On March 11th 2020, World Health Organization (WHO) declared the 2019 novel corona virus as global pandemic. Corona virus, also known as COVID-19 was first originated in Wuhan, Hubei province in China around December 2019 and spread out all over the world within few weeks. Based on the public datasets provided by John Hopkins university and Canadian health authority, we have developed a forecasting model of COVID-19 outbreak in Canada using state-of-the-art Deep Learning (DL) models. In this novel research, we evaluated the key features to predict the trends and possible stopping time of the current COVID-19 outbreak in Canada and around the world. In this paper we presented the Long short-term memory (LSTM) networks, a deep learning approach to forecast the future COVID-19 cases. Based on the results of our Long short-term memory (LSTM) network, we predicted the possible ending point of this outbreak will be around June 2020. In addition to that, we compared transmission rates of Canada with Italy and USA. Here we also presented the 2, 4, 6, 8, 10, 12 and 14th day predictions for 2 successive days. Our forecasts in this paper is based on the available data until March 31, 2020. To the best of our knowledge, this of the few studies to use LSTM networks to forecast the infectious diseases.
Keywords: Epidemic transmission; Time series forecasting; Machine learning; Corona virus; COVID-19; Long short term memory (LSTM) networks (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (68)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920302642
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:135:y:2020:i:c:s0960077920302642
DOI: 10.1016/j.chaos.2020.109864
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().