Solutions of a disease model with fractional white noise
M.A. Akinlar,
Mustafa Inc,
J.F. Gómez-Aguilar and
B. Boutarfa
Chaos, Solitons & Fractals, 2020, vol. 137, issue C
Abstract:
We consider an epidemic disease system by an additive fractional white noise to show that epidemic diseases may be more competently modeled in the fractional-stochastic settings than the ones modeled by deterministic differential equations. We generate a new SIRS model and perturb it to the fractional-stochastic systems. We study chaotic behavior at disease-free and endemic steady-state points on these systems. We also numerically solve the fractional-stochastic systems by an trapezoidal rule and an Euler type numerical method. We also associate the SIRS model with fractional Brownian motion by Wick product and determine numerical and explicit solutions of the resulting system. There is no SIRS-type model which considers fractional epidemic disease models with fractional white noise or Wick product settings which makes the paper totally a new contribution to the related science.
Keywords: SIRS model with fractional Brownian motion; Trapezoidal rule; Euler type numerical method; Stability analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792030240X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:137:y:2020:i:c:s096007792030240x
DOI: 10.1016/j.chaos.2020.109840
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().