A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host
Fatma Bozkurt,
Ali Yousef,
Dumitru Baleanu and
Jehad Alzabut
Chaos, Solitons & Fractals, 2020, vol. 138, issue C
Abstract:
Coronaviruses are highly transmissible and are pathogenic viruses of the 21st century worldwide. In general, these viruses are originated in bats or rodents. At the same time, the transmission of the infection to the human host is caused by domestic animals that represent in the habitat the intermediate host. In this study, we review the currently collected information about coronaviruses and establish a model of differential equations with piecewise constant arguments to discuss the spread of the infection from the natural host to the intermediate, and from them to the human host, while we focus on the potential spillover of bat-borne coronaviruses. The local stability of the positive equilibrium point of the model is considered via the Linearized Stability Theorem. Besides, we discuss global stability by employing an appropriate Lyapunov function. To analyze the outbreak in early detection, we incorporate the Allee effect at time t and obtain stability conditions for the dynamical behavior. Furthermore, it is shown that the model demonstrates the Neimark-Sacker Bifurcation. Finally, we conduct numerical simulations to support the theoretical findings.
Keywords: Differential equation with piecewise constant arguments; Local stability analysis; Coronavirus; Allee effect; Neimark-Sacker Bifurcation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920303301
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303301
DOI: 10.1016/j.chaos.2020.109931
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().