EconPapers    
Economics at your fingertips  
 

Going by the numbers: Learning and modeling COVID-19 disease dynamics

Sayantani Basu and Roy H. Campbell

Chaos, Solitons & Fractals, 2020, vol. 138, issue C

Abstract: The COrona VIrus Disease (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has resulted in a challenging number of infections and deaths worldwide. In order to combat the pandemic, several countries worldwide enforced mitigation measures in the forms of lockdowns, social distancing, and disinfection measures. In an effort to understand the dynamics of this disease, we propose a Long Short-Term Memory (LSTM) based model. We train our model on more than four months of cumulative COVID-19 cases and deaths. Our model can be adjusted based on the parameters in order to provide predictions as needed. We provide results at both the country and county levels. We also perform a quantitative comparison of mitigation measures in various counties in the United States based on the rate of difference of a short and long window parameter of the proposed LSTM model. The analyses provided by our model can provide valuable insights based on the trends in the rate of infections and deaths. This can also be of help for countries and counties deciding on mitigation and reopening strategies. We believe that the results obtained from the proposed method will contribute to societal benefits for a current global concern.

Keywords: COVID-19; Disease dynamics; Long short-term memory (LSTM); Mitigation measures; Social distancing (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920305361
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920305361

DOI: 10.1016/j.chaos.2020.110140

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920305361