Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel
D. Mathale,
Emile F. Doungmo Goufo and
M. Khumalo
Chaos, Solitons & Fractals, 2020, vol. 139, issue C
Abstract:
In this paper, we present mathematical analysis and numerical simulation of a three-dimensional autonomous fractional system with coexistence of multi-scroll chaotic attractors. We replaced the classical derivatives of such system with the Caputo-Fabrizio fractional derivative. This derivative combines both the exponential laws and non-singular kernels in its formulation which makes it special and useful. A two-step Adams-Bashforth scheme is derived for the approximation of the fractional derivative with exponential law and non-singular kernel. We then presented both numerical results and graphical results by considering many values of the fractional-order parameter β ∈ (0, ]. We demonstrate that the observed chaotic behavior conduct perseveres as the fractional-order parameter approaches 1.
Keywords: Caputo-Fabrizio derivative; Adams-Bashforth method; 3D-dimensional autonomous system; Multi-scroll chaotic attractor; Stability analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920304197
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304197
DOI: 10.1016/j.chaos.2020.110021
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().