Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model
Khalid K. Ali,
Carlo Cattani,
J.F. Gómez-Aguilar,
Dumitru Baleanu and
M.S. Osman
Chaos, Solitons & Fractals, 2020, vol. 139, issue C
Abstract:
In this work, we introduce a numerical and analytical study of the Peyrard-Bishop DNA dynamic model equation. This model is studied analytically by hyperbolic and exponential ansatz methods and numerically by finite difference method. A comparison between the results obtained by the analytical methods and the numerical method is investigated. Furthermore, some figures are introduced to show how accurate the solutions will be obtained from the analytical and numerical methods.
Keywords: DNA model; Hyperbolic ansatz method; Exponential ansatz method; Finite difference method (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920304860
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304860
DOI: 10.1016/j.chaos.2020.110089
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().