A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China
Ram Prasad Yadav and
Renu Verma,
Chaos, Solitons & Fractals, 2020, vol. 140, issue C
Abstract:
The novel Covid-19 was identified in Wuhan China in December, 2019 and has created medical emergency world wise and distorted many life in the couple of month, it is being burned challenging situation for the medical scientist and virologists. Fractional order derivative based modeling is quite important to understand the real world problems and to analyse realistic situation of the proposed model. In the present investigation a fractional model based on Caputo-Fabrizio fractional derivative has been developed for the transmission of CORONA VIRUS (COVID-19) in Wuhan China. The existence and uniqueness solutions of the fractional order derivative has been investigated with the help of fixed point theory. Adamas- Bashforth numerical scheme has been used in the numerical simulation of the Caputo-Fabrizio fractional order derivative. The analysis of susceptible population, exposed population, infected population, recovered population and concentration of the virus of COVID-19 in the surrounding environment with respect to time for different values of fractional order derivative has been shown by means of graph. The comparative analysis has also been performed from classical model and fractional model along with the certified experimental data.
Keywords: COVID-19; Infectious Diseases; Caputo-Fabrizio fractional order derivative; Numerical Simulation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920305026
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305026
DOI: 10.1016/j.chaos.2020.110124
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().