Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting
Fethi Souna,
Abdelkader Lakmeche and
Salih Djilali
Chaos, Solitons & Fractals, 2020, vol. 140, issue C
Abstract:
In this paper, a diffusive predator-prey model subject to the zero flux boundary conditions is considered, in which the prey population exhibits social behavior and the harvesting functional of the predator population is assumed to be considered in a quadratic form. The existence of a positive solution and its bounders is investigated. The global stability of the semi trivial constant equilibrium state is established. Concerning the non trivial equilibrium state, the local stability, Hopf bifurcation, diffusion driven instability, Turing-Hopf bifurcation are investigated. The direction and the stability of Hopf bifurcation relying on the system parameters is derived. Some numerical simulations are used to extend the analytical results and show the occurrence of the homogeneous and non homogeneous periodic solutions. Further the effect of the rivalry rate on the dynamical behavior of the studied species.
Keywords: Herd behavior; Predator-prey model; Hopf bifurcation; Turing driven instability; Global stability; Quadratic predator harvesting (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920305762
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305762
DOI: 10.1016/j.chaos.2020.110180
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().