A predictive model and country risk assessment for COVID-19: An application of the Limited Failure Population concept
Themistoklis Koutsellis and
Alexandros Nikas
Chaos, Solitons & Fractals, 2020, vol. 140, issue C
Abstract:
This article provides predictions for the spread of the SARS-CoV-2 virus for a number of European countries and the United States of America, drawing from their different profiles, both socioeconomically and in terms of outbreak and response to the 2019–2020 coronavirus pandemic, from an engineering and data science perspective. Each country is separately analysed, due to their differences in populations density, cultural habits, health care systems, protective measures, etc. The probabilistic analysis is based on actual data, as provided by the World Health Organization (WHO), as of May 1, 2020. The deployed predictive model provides analytical expressions for the cumulative density function of COVID-19 curve and estimations of the proportion of infected subpopulation for each country. The latter is used to define a Risk Index, towards assessing the level of risk for a country to exhibit high rates of COVID-19 cases after a given interval of observation and given the plans of lifting lockdown measures.
Keywords: Risk assessment; Forecasting; COVID-19; Limited Failure Population; Pandemic; Coronavirus (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920306366
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306366
DOI: 10.1016/j.chaos.2020.110240
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().