Forman-Ricci curvature and persistent homology of unweighted complex networks
Indrava Roy,
Sudharsan Vijayaraghavan,
Sarath Jyotsna Ramaia and
Areejit Samal
Chaos, Solitons & Fractals, 2020, vol. 140, issue C
Abstract:
We present the application of topological data analysis (TDA) to study unweighted complex networks via their persistent homology. By endowing appropriate weights that capture the inherent topological characteristics of such a network, we convert an unweighted network into a weighted one. Standard TDA tools are then used to compute their persistent homology. To this end, we use two main quantifiers: a local measure based on Forman’s discretized version of Ricci curvature, and a global measure based on edge betweenness centrality. We have employed these methods to study various model and real-world networks. Our results show that persistent homology can be used to distinguish between model and real networks with different topological properties.
Keywords: Complex networks; Persistent homology; Forman-Ricci curvature; Edge betweenness centrality (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920306561
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306561
DOI: 10.1016/j.chaos.2020.110260
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().