Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization
Hossein Abbasimehr and
Reza Paki
Chaos, Solitons & Fractals, 2021, vol. 142, issue C
Abstract:
COVID-19 virus has encountered people in the world with numerous problems. Given the negative impacts of COVID-19 on all aspects of people's lives, especially health and economy, accurately forecasting the number of cases infected with this virus can help governments to make accurate decisions on the interventions that must be taken. In this study, we propose three hybrid approaches for forecasting COVID-19 time series methods based on combining three deep learning models such as multi-head attention, long short-term memory (LSTM), and convolutional neural network (CNN) with the Bayesian optimization algorithm. All models are designed based on the multiple-output forecasting strategy, which allows the forecasting of the multiple time points. The Bayesian optimization method automatically selects the best hyperparameters for each model and enhances forecasting performance. Using the publicly available epidemical data acquired from Johns Hopkins University's Coronavirus Resource Center, we conducted our experiments and evaluated the proposed models against the benchmark model. The results of experiments exhibit the superiority of the deep learning models over the benchmark model both for short-term forecasting and long-horizon forecasting. In particular, the mean SMAPE of the best deep learning model is 0.25 for the short-term forecasting (10 days ahead). Also, for long-horizon forecasting, the best deep learning model obtains the mean SMAPE of 2.59.
Keywords: COVID-19; Deep learning; Multi-head attention; CNN; LSTM; Bayesian optimization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920309036
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920309036
DOI: 10.1016/j.chaos.2020.110511
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().