EconPapers    
Economics at your fingertips  
 

Emerging social brain: A collective self-motivated Boltzmann machine

Yong Tao, Didier Sornette and Li Lin

Chaos, Solitons & Fractals, 2021, vol. 143, issue C

Abstract: Boltzmann machines are unsupervised-learning neural networks, which have contributed to the opening of the field of deep learning architectures. Here we show that, using the modern theory of economic growth, when the number of agents in a free-market society with equal opportunity exceeds a threshold value, a Boltzmann-like income distribution emerges, where the entropy plays the role of swarm intelligence in humans and quantifies its cumulative technological progress. Theoretically, we further show that the emergence of a Boltzmann-like income distribution in a society of optimizing agents reflects the spontaneous organization of a human society to form a Boltzmann machine in which each person plays a role analogous to that of a neuron within a brain-like architecture. This Boltzmann machine exhibits three essential brain-like features, namely the McCulloch-Pitts learning rule, unsupervised-learning, and self-motivation, and satisfies in addition the minimum free-energy principle of the brain theory. Empirically, we investigate the household income data from 66 free-market countries and Hong Kong SAR, and find that, for all of the countries, the income structure for low and middle classes (about 95% of populations) is accurately described by a Boltzmann-like distribution. We suggest that this is a statistical signature that our social networks are going through a critical evolution in the form of a kind of brain-like structure.

Keywords: Boltzmann machine; Swarm intelligence; Social brain; Boltzmann distribution; Self-reference; Self-organization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920309346
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309346

DOI: 10.1016/j.chaos.2020.110543

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309346