EconPapers    
Economics at your fingertips  
 

An Efficient Numerical Simulation of a Reaction-Diffusion Malaria Infection Model using B-splines Collocation

R.C. Mittal, Rohit Goel and Neha Ahlawat

Chaos, Solitons & Fractals, 2021, vol. 143, issue C

Abstract: Malaria is a potentially life-threatening disease caused by parasite. This disease is more common in countries with tropical climates. Due to chromosomal mutations, the dynamics of malaria parasites are quite complex to study as well as for any predictions. A reaction-diffusion model to characterize the dynamics of within-host malaria infection with adaptive immune responses is studied in this paper. A numerical scheme based on the collocation of cubic B-splines is proposed to approximate the solution of the considered reaction-diffusion model. Collocation forms of the partial differential equation results in a system of first order ordinary differential equations which in turn have been solved by RK4 method. The non-linearity of the model is being resolved without any transformation or linearization. The computed numerical results are in good agreement with those already available in the literature. Easy to apply and achieving accurate solutions in less CPU time are the strong points of the present method.

Keywords: Malaria; Reaction-Diffusion model; Cubic B-splines; basis functions; Tri-diagonal matrix; Runge-Kutta (RK4) method (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920309577
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309577

DOI: 10.1016/j.chaos.2020.110566

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309577