A phenomenological estimate of the true scale of CoViD-19 from primary data
Luigi Palatella,
Fabio Vanni and
David Lambert
Chaos, Solitons & Fractals, 2021, vol. 146, issue C
Abstract:
Estimation of the prevalence of undocumented SARS-CoV-2 infections is critical for understanding the overall impact of CoViD-19, and for implementing effective public policy intervention strategies. We discuss a simple yet effective approach to estimate the true number of people infected by SARS-CoV-2, using raw epidemiological data reported by official health institutions in the largest EU countries and the USA.
Keywords: Renewal equation; Scale of epidemics; SARS-CoV2 prevalence (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921002071
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002071
DOI: 10.1016/j.chaos.2021.110854
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().