Analysis of basins of attraction of new coupled hidden attractor system
Li Cui,
Wenhui Luo and
Qingli Ou
Chaos, Solitons & Fractals, 2021, vol. 146, issue C
Abstract:
This paper mainly discusses the characteristic of the basin of attraction of two coupled chaotic systems, which provides a theoretical basis for the application of nonlinear systems in the fields of communication, control and artificial intelligence. Thus, in order to increase the complexity of the chaotic systems, two identical linear couplings are used to hide a system composed of attractors, and therefore the system has chaotic characteristic within a specific coupling strength range. We use an ode45 algorithm to solve the coupled chaotic systems to obtain a chaotic phase diagram, Lyaponov exponential spectrum and a bifurcation diagram of the system and prove that the attractors of the coupled systems are attractors in the sense of Milnor, and the basin of attraction of the coupled chaotic systems has a sieve-type property. A Lyaponov exponential function of the nonlinear system can be used to analyze the stability of the system, when the system operates in an initial state, the system will move in the direction that the Lyaponov exponential function decreases until it reaches a local minimum, a local minimum point of the Lyaponov exponential function represents a stable point of a phase space, and each attractor surrounds one substantial basin of attraction. Therefore, we use a Lyaponov exponent to describe and analyze the basin of attraction of the coupled chaotic systems. And meanwhile, when analyzing the system, we found that the system has rich dynamic behavior and multi-stability for hiding of the attractors.
Keywords: Coupling system; Hidden attractor; Positive Lebesgue measure; Riddled basins (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921002678
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002678
DOI: 10.1016/j.chaos.2021.110913
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().