Coexistence of interdependence and competition in adaptive multilayer network
Nikita Frolov,
Sarbendu Rakshit,
Vladimir Maksimenko,
Daniil Kirsanov,
Dibakar Ghosh and
Alexander Hramov
Chaos, Solitons & Fractals, 2021, vol. 147, issue C
Abstract:
In dynamical networks, the presence of adaptation establishing the relationship between the coherence of local populations and unit’s effective coupling provides the explosive transition — an abrupt transition from incoherence to coherence and vice versa through the hysteresis loop. Explosive transition is even possible under the coexistence of two opposite types of adaptation – interdependence and competition, wherein growing the competitive population dramatically narrows the area of hysteresis. Here, we demonstrate that considering a mixed adaptive model from a multilayer perspective expands the hysteresis region and shifts both forward and backward transition boundaries to the higher values of coupling strength as compared with a monolayer case. We show that this is due to greater robustness of the multilayer network against the intralayer topology and lower sensitivity to the amplification of the pre-bifurcation noise, i.e., spurious fluctuations of local coherence, in the vicinity of a tipping point as opposed to a single-layer network.
Keywords: Explosive synchronization; Competition; Interdependence; Adaptive network; Multilayer network (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792100309X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:147:y:2021:i:c:s096007792100309x
DOI: 10.1016/j.chaos.2021.110955
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().