EconPapers    
Economics at your fingertips  
 

More efficient estimates via ℏ-discrete fractional calculus theory and applications

Saima Rashid, Sobia Sultana, Fahd Jarad, Hossein Jafari and Y.S. Hamed

Chaos, Solitons & Fractals, 2021, vol. 147, issue C

Abstract: Discrete fractional calculus (DFC) is continuously spreading in the engineering practice, neural networks, chaotic maps, and image encryption, which is appropriately assumed for discrete-time modelling in continuum problems. First, we start with a novel discrete ℏ-proportional fractional sum defined on the time scale ℏZ so as to give the premise to the more broad and complex structures, for example, the suitably accustomed transformations conjuring the property of observing the new chaotic behaviors of the logistic map. Here, we aim to present the novel discrete versions of Grüss and certain other associated variants by employing discrete ℏ-proportional fractional sums are established. Moreover, several novel consequences are recaptured by the ℏ-discrete fractional sums. The present study deals with the modification of Young, weighted-arithmetic and geometric mean formula by taking into account changes in the exponential function in the kernel represented by the parameters of the operator, varying delivery noted outcomes. In addition, two illustrative examples are apprehended to demonstrate the applicability and efficiency of the proposed technique.

Keywords: Grüss inequality; Young inequality; ℏ-discrete fractional operators; Discrete ℏ-proportional fractional operator; Arithmetic-geometric mean inequality; Young’s inequality (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921003350
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921003350

DOI: 10.1016/j.chaos.2021.110981

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921003350