Modeling and controlling the spread of epidemic with various social and economic scenarios
I.S. Gandzha,
O.V. Kliushnichenko and
S.P. Lukyanets
Chaos, Solitons & Fractals, 2021, vol. 148, issue C
Abstract:
We propose a dynamical model for describing the spread of epidemics. This model is an extension of the SIQR (susceptible-infected-quarantined-recovered) and SIRP (susceptible-infected-recovered-pathogen) models used earlier to describe various scenarios of epidemic spreading. As compared to the basic SIR model, our model takes into account two possible routes of contagion transmission: direct from the infected compartment to the susceptible compartment and indirect via some intermediate medium or fomites. Transmission rates are estimated in terms of average distances between the individuals in selected social environments and characteristic time spans for which the individuals stay in each of these environments. We also introduce a collective economic resource associated with the average amount of money or income per individual to describe the socioeconomic interplay between the spreading process and the resource available to infected individuals. The epidemic-resource coupling is supposed to be of activation type, with the recovery rate governed by the Arrhenius-like law. Our model brings an advantage of building various control strategies to mitigate the effect of epidemic and can be applied, in particular, to modeling the spread of COVID-19.
Keywords: Spreading process; Epidemic; SIR model; COVID-19; Economic resource; Arrhenius law (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921004008
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921004008
DOI: 10.1016/j.chaos.2021.111046
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().