EconPapers    
Economics at your fingertips  
 

Approximate controllability of hybrid Hilfer fractional differential inclusions with non-instantaneous impulses

Assia Boudjerida and Djamila Seba

Chaos, Solitons & Fractals, 2021, vol. 150, issue C

Abstract: This paper deals with the approximate controllability of a class of non-instantaneous impulsive hybrid systems for fractional differential inclusions under Hilfer derivative of order 1<σ<2 and type 0≤ζ≤1, on weighted spaces. As an alternative to the Wright function which is defined only when 0<σ<1, we make use of a family of general fractional resolvent operators to give a proper form of the mild solution. This latter is consequently formulated by Laplace transform, improving and extending important results on this topic. Based on known facts about fractional calculus and set-valued maps, properties of the resolvent operator, and a hybrid fixed point theorem for three operators of Schaefer type, the existence result and the approximate controllability of our system is achieved. An example is given to demonstrate the effectiveness of our result.

Keywords: Hybrid systems; Fractional differential inclusions; Approximate controllability; Non-instantaneous impulses; Hilfer fractional derivative; Resolvent operators; Mild solutions (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921004793
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004793

DOI: 10.1016/j.chaos.2021.111125

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004793