A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations
Smina Djennadi,
Nabil Shawagfeh and
Omar Abu Arqub
Chaos, Solitons & Fractals, 2021, vol. 150, issue C
Abstract:
In this research, we deal with two types of inverse problems for diffusion equations involving Caputo fractional derivatives in time and fractional Sturm-Liouville operator for space. The first one is to identify the source term and the second one is to identify the initial value along with the solution in both cases. These inverse problems are proved to be ill-posed in the sense of Hadamard whenever an additional condition at the final time is given. A new fractional Tikhonov regularization method is used for the reconstruction of the stable solutions. Under the a-priori and the a-posteriori parameter choice rules, the error estimates between the exact and its regularized solutions are obtained. To illustrate the validity of our study, we give numerical examples. A final note is utilized in the ultimate section.
Keywords: Fractional Sturm-Liouville operator; Fractional Tikhonov regularization; Inverse source problem; Inverse backward problem; Ill-posed problem; Caputo fractional derivative (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921004811
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004811
DOI: 10.1016/j.chaos.2021.111127
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().