Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems
Guowei Wang,
Dong Yu,
Qianming Ding,
Tianyu Li and
Ya Jia
Chaos, Solitons & Fractals, 2021, vol. 150, issue C
Abstract:
The effects of electric field on vibrational resonance in single Hindmarsh-Rose (HR) neuron and coupled HR neurons system are investigated by using Fourier coefficient, respectively. It is found that the multiple vibrational resonances (MVR) can be observed in a single HR neuron model no matter the electric field is considered or not, and the electric field weakens the MVR. When bidirectional coupling between two HR neurons is considered, the occurrence of MVR can also be detected, it is very interesting to observe that the electric field can enhance the MVR. The higher the frequency of the low-frequency signal is, the less the number of resonance peaks of the system response to the low-frequency signal will be. Moreover, the local anti-resonance is also observed when appropriate parameters are selected. The effects of coupling strength and other system parameters on Fourier coefficient are also illustrated here. The systems manifesting MVR have better capacity for detecting and propagating signals.
Keywords: Hindmarsh-Rose model; Multiple vibrational resonance; Electric field; Fourier coefficient (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921005646
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921005646
DOI: 10.1016/j.chaos.2021.111210
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().