The effect of COVID-19 on long memory in returns and volatility of cryptocurrency and stock markets
Salim Lahmiri and
Stelios Bekiros
Chaos, Solitons & Fractals, 2021, vol. 151, issue C
Abstract:
We examine long memory (self-similarity) in digital currencies and international stock exchanges prior and during COVID-19 pandemic. Specifically, ARFIMA and FIGARCH models are respectively employed to evaluate long memory parameter in returns and volatility. The dataset contains 45 cryptocurrency markets and 16 international equity markets. The t-test and F-test are performed to estimated long memory parameters. The empirical findings follow. First, the level of persistence in return series of both markets has increased during the COVID-19 pandemic. Second, during COVID-19 pandemic, variability level in persistence in return series has increased in both digital currencies and stock markets. Third, return series in both markets exhibited comparable level of persistence prior and during the COVID-19 pandemic. Fourth, return series in volatility series of cryptocurrency exhibited high degree of persistence compared to international stock markets during the COVID-19 pandemic. Therefore, it is concluded that COVID-19 pandemic significantly affected long memory in return and volatility of cryptocurrency and international stock markets. In addition, our results suggest that the hybrid long memory model represented by the integration of ARFIMA-FIGARCH is significantly suitable to describe returns and volatility of cryptocurrencies and stocks and to reveal differences before and during COVID-19 pandemic periods.
Keywords: COVID-19; Pandemic; Cryptocurrency; Stock market; Returns; Volatility; Long-memory (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921005750
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921005750
DOI: 10.1016/j.chaos.2021.111221
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().