Dispersive wave propagation of the nonlinear Sasa-Satsuma dynamical system with computational and analytical soliton solutions
Eman Simbawa,
Aly R. Seadawy and
Taghreed G. Sugati
Chaos, Solitons & Fractals, 2021, vol. 152, issue C
Abstract:
The Sasa-Satsuma equation on a continuous background describes a nonlinear fiber system with higher-order effects including the third-order dispersion and Kerr dispersion. The Sasa-Satsuma equations describe the simultaneous propagation of two ultrashort pulses in the birefringent or two-mode fiber with the third-order dispersion, self-steepening, and stimulated Raman in scattering effects, and govern the propagation of ultra-fast pulses in optical fiber transmission systems. We consider the Sasa-Satsuma equation, which is one of the integrable extensions of the nonlinear Schrödinger equations. We find the functional integral and the Lagrangian of this model. We derived the computational and analytical soliton solutions of the nonlinear Sasa-Satsuma dynamical system. We discuss the stability analysis for our solutions.
Keywords: The new generalized form of Sasa-Satsuma model; Optical soliton solutions; Modified analytical method; Numerical and computational methods (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792100730X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:152:y:2021:i:c:s096007792100730x
DOI: 10.1016/j.chaos.2021.111376
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().