Predicting the trend of indicators related to Covid-19 using the combined MLP-MC model
Fatemeh Haghighat
Chaos, Solitons & Fractals, 2021, vol. 152, issue C
Abstract:
Although more than a year has passed since the coronavirus outbreak globally, the Covid-19 pandemic conditions still exist in many countries, including Iran. Predicting the number of future patients and deaths can help governments and policymakers make better decisions to enforce disease control restrictions. In this study, we aim to use a combined multilayer perceptron (MLP) neural network and Markov chain (MC) model to predict two indicators of the number of discharged and death cases according to their relationship with the number of hospitalized cases in Bushehr province, Iran. This hybrid model is called MLP-MC.
Keywords: Covid-19 related indicators; MLP model; MLP-MC model; Prediction (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921007530
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007530
DOI: 10.1016/j.chaos.2021.111399
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().