A constructive theory of shape
Vladimir García-Morales
Chaos, Solitons & Fractals, 2021, vol. 152, issue C
Abstract:
We formulate a theory of shape valid for objects of arbitrary dimension whose contours are path connected. We apply this theory to the design and modeling of viable trajectories of complex dynamical systems. Infinite families of qualitatively similar shapes are constructed giving as input a finite ordered set of characteristic points (landmarks) and the value of a continuous parameter κ∈(0,∞). We prove that all shapes belonging to the same family are located within the convex hull of the landmarks. The theory is constructive in the sense that it provides a systematic means to build a mathematical model for any shape taken from the physical world. We illustrate this with a variety of examples: (chaotic) time series, plane curves, space filling curves, knots and strange attractors.
Keywords: Viable evolutions; Parametric equations; Space-filling curves; Knots; Time series (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921007803
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007803
DOI: 10.1016/j.chaos.2021.111426
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().