Spatiotemporal complexity in a Leslie-Gower type predator-prey model near Turing-Hopf point
Mengxin Chen,
Ranchao Wu,
Hongxia Liu and
Xiaoxue Fu
Chaos, Solitons & Fractals, 2021, vol. 153, issue P1
Abstract:
The Leslie-Gower type predator-prey system with the ratio-dependent Holling III functional response and Neumann boundary conditions is investigated in this paper. First, the boundedness results of both parabolic and elliptic equations are presented. Hereafter, the existence of the codimension-two Turing-Hopf point (C2THP) is identified, where the Turing and the Hopf modes intersect. To further explore the spatiotemporal dynamics near the C2THP, it is necessary to derive the amplitude equations, however, there are few results about that in the two-dimensional domain. Here the method of weakly nonlinear analysis is adopted to derive the amplitude equations. The temporal patterns, hexagonal patterns, and plane wave patterns, as well as the sufficient conditions of their existence and stability, can be presented through amplitude equations.
Keywords: Predator-prey model; Turing-Hopf bifurcation; Weakly nonlinear analysis; Spatiotemporal pattern (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921008638
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:153:y:2021:i:p1:s0960077921008638
DOI: 10.1016/j.chaos.2021.111509
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().