Bifurcations underlying different excitability transitions modulated by excitatory and inhibitory memristor and chemical autapses
Fuqiang Wu,
Huaguang Gu and
Yanbing Jia
Chaos, Solitons & Fractals, 2021, vol. 153, issue P2
Abstract:
Memristor is an emerging modulation factor to mimic neuronal synapse, and the switch or transition between neuronal excitability classes is an important topic in nonlinear dynamics and neurophysiology. In the present investigation on the Morris-Lecar model, the memristive autapse is identified to induce excitability transitions different from those of the chemical one. The inhibitory and excitatory chemical autapses induce excitability switch from class I to II and from class II to I, respectively. However, the inhibitory and excitatory memristive autapses induce the transition from class II to I and from class I to II, respectively. Furthermore, comprehensive bifurcation mechanisms underlying the transitions are acquired. The class I excitability corresponds to saddle-node bifurcation on an invariant cycle (SNIC), and class II excitability to the saddle-node (SN) bifurcation and Hopf bifurcation. Type I spiking corresponds to the SNIC or big homoclinic (BHom) orbit bifurcations, and type II spiking to the Fold Limit Cycle (FLC) bifurcation or supercritical Hopf bifurcation. Among various codimension-2 bifurcations, the saddle-node homoclinic orbit bifurcation, which is related to the SNIC, BHom, and SN bifurcations, is responsible for the excitability transition. A nameless degenerate bifurcation associated with the BHom and FLC bifurcations, is responsible for the spiking transition. In addition, the nullcline shapes present the geometric mechanism for the transitions. The obtained results present different roles of memristive and chemical autapses on modulating neuronal electrical activities and the underlying dynamical mechanisms, which are helpful for the design and development of novel memristive synapses with excitatory or inhibitory effects.
Keywords: Bifurcation; Excitability transition; Memristor; Autapse; Excitation; Inhibition (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921009656
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921009656
DOI: 10.1016/j.chaos.2021.111611
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().