Towards predicting COVID-19 infection waves: A random-walk Monte Carlo simulation approach
D.P. Mahapatra and
S. Triambak
Chaos, Solitons & Fractals, 2022, vol. 156, issue C
Abstract:
Phenomenological and deterministic models are often used for the estimation of transmission parameters in an epidemic and for the prediction of its growth trajectory. Such analyses are usually based on single peak outbreak dynamics. In light of the present COVID-19 pandemic, there is a pressing need to better understand observed epidemic growth with multiple peak structures, preferably using first-principles methods. Along the lines of our previous work [Physica A 574, 126014 (2021)], here we apply 2D random-walk Monte Carlo calculations to better understand COVID-19 spread through contact interactions. Lockdown scenarios and all other control interventions are imposed through mobility restrictions and a regulation of the infection rate within the stochastically interacting population. The susceptible, infected and recovered populations are tracked over time, with daily infection rates obtained without recourse to the solution of differential equations.
Keywords: COVID-19; Random walk; Monte Carlo simulations; Epidemic waves (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921011383
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077921011383
DOI: 10.1016/j.chaos.2021.111785
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().