EconPapers    
Economics at your fingertips  
 

Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties

Yasir Muhammad, Nusrat Khan, Saeed Ehsan Awan, Muhammad Asif Zahoor Raja, Naveed Ishtiaq Chaudhary, Adiqa Kausar Kiani, Farman Ullah and Chi-Min Shu

Chaos, Solitons & Fractals, 2022, vol. 161, issue C

Abstract: Optimal reactive power dispatch (ORPD) with integration of renewable energy resources has a growing interest in research community due to its utmost requirements during the operation, planning and design of the modern electrical power networks. The objective of ORPD is to improve the performance of power network by means of reducing the losses in transmission line, improving the voltage profile, and decreasing the overall cost of operation through optimal tuning of the operational variables such as tap position of transformers, generator output voltages and capacitor banks. However, the nonlinear, non-stationary and complex nature of power network, presence of load uncertainties, and dynamic behavior of wind generation introduces a complex optimization task which cannot be readily solved in an efficient manner. In this research work, a new fractional memetic computing paradigm, i.e., the fractional particle swarm optimization gravitational search algorithm with entropy evolution (FPSOGSA-EE), is designed to solve the ORPD problems in power system adopting wind power plants (WPPs) and load uncertainties. The proposed optimization framework FPSOGSA-EE integrates the concept of fractional calculus and Shannon entropy to strengthen the optimization characteristics of canonical algorithm. The exhaustive experimentation endorse the efficacy of FPSOGSA-EE by providing minimum gauge of fitness evaluation function, namely, the line loss and voltage deviation index minimization, in IEEE 30 and 57 bus networks. The stability, consistency and reliability of proposed FPSOGSA-EE is ascertained through statistical interpretations by means of boxplots, probability measures for cumulative distribution function, and histogram illustrations.

Keywords: Reactive power dispatch; Wind power plants; Power losses; Stochastic programming; Voltage deviation index; Uncertainty modeling (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922004957
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922004957

DOI: 10.1016/j.chaos.2022.112285

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922004957