Controlling of nonlinear dynamical networks based on decoupling and re-coupling method
Dongli Duan,
Xue Bai,
Yisheng Rong,
Gege Hou and
Jiale Hang
Chaos, Solitons & Fractals, 2022, vol. 163, issue C
Abstract:
Although a large number of studies have verified and explained the controllability of complex networks in real life and nature, there is a deficiency of accurate control strategies based on the proposed theory of network controllability. Here, we propose a new dimension reduction method, which firstly decouples the N-dimensional interdependent system into N independent systems, then re-couples them into one state space. The tool can help predict the state of individual nodes, explore the behavior pattern of different dynamic models in the network, and quantify the responses of the network states in terms of its own structure and external disturbances. The results show that for nonlinear dynamical models with biochemical dynamics, birth–death processes, regulatory dynamics and epidemic processes on Scale-Free and Erdös–Rényi networks, the activity of the target node or target node set can be accurately reached by controlling the behavior of some nodes with our framework.
Keywords: Dynamical network; Network controllability; Dimension reduction; Epidemic processes; Regulatory dynamic (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922007226
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:163:y:2022:i:c:s0960077922007226
DOI: 10.1016/j.chaos.2022.112522
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().