EconPapers    
Economics at your fingertips  
 

An indicator to quantify the complexity of signals and surfaces based on scaling behaviors transcending fractal

Zhiwei Li, Jianjian Wang, Meng Yuan, Zhongyu Wang, Pingfa Feng and Feng Feng

Chaos, Solitons & Fractals, 2022, vol. 163, issue C

Abstract: In the well-established fractal scheme, the fractal dimension (D) is a central indicator of the complexity of fractal features. The D values of non-fractal signals and surfaces are 1 and 2, respectively, while there can be varieties in their complexities. In this study, the scaling characteristics of root-mean-squared roughness could exhibit a continuous variation transcending the boundary between fractal and non-fractal by using the roughness scaling extraction (RSE) method proposed in previous study, and an universal indicator (HRSE, Hurst exponent calculated by RSE method) to quantify the complexity of both fractal and non-fractal features is demonstrated. The actual signals (milling vibration) and surfaces (silver thin films) together with the artificial ones generated through Weierstrass–Mandelbrot (W–M) function were analyzed. Within the fractal scope, the calculated results with RSE method could be close to the ideal D values of W–M function with an accuracy higher than those of the traditional fractal methods (including Box-Counting, Higuchi, Katz, power spectral density, structure function, and autocorrelation function methods). For the non-fractal features, the complexity could also be quantified effectively by HRSE. Chatter could be recognize by HRSE of milling vibration signals, because it was larger than 1, from 0.5 to 1, and less than 0.5 in idling, stable milling and chatter milling states, respectively; For thin film surfaces, HRSE increased monotonically from 0.79 to 1.32 along with Sq increasing, indicating a strong positive correlation. The findings indicated that the scaling analysis could be utilized for both fractal and non-fractal features, which would be beneficial for various engineering applications.

Keywords: Roughness scaling characteristics; Fractal dimension; Complexity indicator; Hurst exponent; Weierstrass–Mandelbrot function; Milling vibration signals; Thin film surfaces (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922007482
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:163:y:2022:i:c:s0960077922007482

DOI: 10.1016/j.chaos.2022.112556

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:163:y:2022:i:c:s0960077922007482