A new multi-wing chaotic attractor with unusual variation in the number of wings
Shilalipi Sahoo and
Binoy Krishna Roy
Chaos, Solitons & Fractals, 2022, vol. 164, issue C
Abstract:
A new multi-wing chaotic system with some unusual properties is reported in this paper. Here, the number of wings and the amplitude of the chaotic attractor depend on (i) simulation time, (ii) initial conditions, and (iii) system parameters. The amplitude and number of wings of the multi-wing chaotic attractor are not reaching to a fixed chaotic attractor, as in the case of other chaotic systems like Lorenz, even after a very large simulation time of 800000 s. On the other hand, the Lyapunov exponents of the system remain the same with an increasing trend of the simulation time. Moreover, the amplitude and the number of wings of the chaotic attractor keep varying with the simulation time when the initial conditions and system parameters change. Such an unusual property of a chaotic attractor is termed as dynamic-chaotic attractor. In addition to these behaviors, different complex properties of this new chaotic system are explored by plotting phase portraits, Lyapunov spectrum, bifurcation diagrams and Poincare maps. Both homogeneous and heterogeneous multi-stability are found; the co-existence of 7 multi-wing chaotic attractors is reported. Hence, this kind of system is rare in the literature.
Keywords: Multi-wing chaotic attractor; Simulation time; Number of wings; Multi-stability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792200786X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:164:y:2022:i:c:s096007792200786x
DOI: 10.1016/j.chaos.2022.112598
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().