Effects of quadrilateral clustering on complex contagion
Wonhee Jeong and
Unjong Yu
Chaos, Solitons & Fractals, 2022, vol. 165, issue P1
Abstract:
Clustering is one of the most important properties that determine the function of complex networks. But the conventional clustering coefficient considers only triangles without a clear basis. To examine the role of higher-order clustering beyond the conventional triangular clustering, we propose the quadrilateral clustering coefficient that counts the number of cycles of length 4. We also present algorithms to generate quadrilateral clustered networks with regular and scale-free degree distributions. We study the complex contagion model, where clustering promotes spreading. We show that quadrilateral clustered networks have a significant clustering effect, despite negligible conventional clustering coefficient. Moreover, we demonstrate that the clustering effect is stronger in the square lattice with zero conventional clustering coefficient than in the kagome lattice with a sizable conventional clustering coefficient, counterintuitively. Therefore, we conclude that the clustering by quadrilaterals is critical as well as the classical triangular clustering at least in complex contagion.
Keywords: Complex networks; Clustering coefficient; Complex contagion; Diffusion of innovations (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922009638
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009638
DOI: 10.1016/j.chaos.2022.112784
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().