Integrating theory and experiments to link local mechanisms and ecosystem-level consequences of vegetation patterns in drylands
Ricardo Martinez-Garcia,
Ciro Cabal,
Justin M. Calabrese,
Emilio Hernández-García,
Corina E. Tarnita,
Cristóbal López and
Juan A. Bonachela
Chaos, Solitons & Fractals, 2023, vol. 166, issue C
Abstract:
Self-organized spatial patterns of vegetation are frequent in drylands and, because pattern shape correlates with water availability, they have been suggested as important indicators of ecosystem health. However, the mechanisms underlying pattern emergence remain unclear. Some theories hypothesize that patterns could result from a water-mediated scale-dependent feedback (SDF) whereby interactions favoring plant growth dominate at short distances and growth–inhibitory interactions dominate in the long range. However, we know little about how the presence of a focal plant affects the fitness of its neighbors as a function of the inter-individual distance, which is expected to be highly ecosystem-dependent. This lack of empirical knowledge and system dependency challenge the relevance of SDF as a unifying theory for vegetation pattern formation. Assuming that plant interactions are always inhibitory and only their intensity is scale-dependent, alternative theories also recover the typical vegetation patterns observed in nature. Importantly, although these alternative hypotheses lead to visually indistinguishable patterns, they predict contrasting desertification dynamics, which questions the potential use of vegetation patterns as ecosystem-state indicators. To help resolve this issue, we first review existing theories for vegetation self-organization and their conflicting predictions about desertification dynamics. Second, we discuss potential empirical tests via manipulative experiments to identify pattern-forming mechanisms and link them to specific desertification dynamics. A comprehensive view of models, the mechanisms they intend to capture, and experiments to test them in the field will help to better understand both how patterns emerge and improve predictions on the fate of the ecosystems where they form.
Keywords: Ecological patterns; Competition; Scale-dependent feedback; Ecological transitions; Spatial self-organization; Mathematical models (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922010608
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922010608
DOI: 10.1016/j.chaos.2022.112881
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().