EconPapers    
Economics at your fingertips  
 

About ghost transients in spatial continuous media

Àngel Calsina, Sílvia Cuadrado, Blai Vidiella and Josep Sardanyés

Chaos, Solitons & Fractals, 2023, vol. 166, issue C

Abstract: The impact of space on ecosystem dynamics has been a matter of debate since the dawn of theoretical ecology. Several studies have revealed that space usually involves an increase in transients’ times, promoting the so-called supertransients. However, the effect of space and diffusion in transients close to bifurcations has not been thoroughly investigated. In non-spatial deterministic models such as those given by ordinary differential equations transients become extremely long in the vicinity of bifurcations. Specifically, for the saddle–node (s–n) bifurcation the time delay, τ, follows τ∼|μ−μc|−1/2; μ and μc being the bifurcation parameter and the bifurcation value, respectively. Such long transients are labeled delayed transitions and are governed by the so-called ghosts. Here, we explore a simple model with intra-specific cooperation (autocatalysis) and habitat loss undergoing a s–n bifurcation using a partial differential equations (PDE) approach. We focus on the effects of diffusion in the ghost extinction transients right after the tipping point found at a critical habitat loss threshold. Our results show that the bifurcation value does not depend on diffusion. Despite transients’ length typically increase close to the bifurcation, we have observed that at extreme values of diffusion, both small and large, extinction times remain long and close to the well-mixed results. However, ghosts lose influence at intermediate diffusion rates, leading to a dramatic reduction of transients’ length. These results, which strongly depend on the initial size of the population, are shown to remain robust for different initial spatial distributions of cooperators. A simple two-patch metapopulation model gathering the main results obtained from the PDEs approach is also introduced and discussed. Finally, we provide analytical results of the passage times and the scaling for the model under study transformed into a normal form. Our findings are discussed within the framework of ecological transients.

Keywords: Ghosts; Reaction–diffusion dynamics; Saddle–node bifurcations; Scaling laws; Spatial ecology; Tipping points; Transients (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922010943
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922010943

DOI: 10.1016/j.chaos.2022.112915

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922010943