EconPapers    
Economics at your fingertips  
 

On the nonstandard finite difference method for reaction–diffusion models

Syed Ahmed Pasha, Yasir Nawaz and Muhammad Shoaib Arif

Chaos, Solitons & Fractals, 2023, vol. 166, issue C

Abstract: The nonstandard finite difference (NSFD) method is an elegant approach in that it overcomes the numerical instability and bias exhibited by standard finite difference methods for numerically solving nonlinear differential equations. In addition, the NSFD method preserves some qualitative features of the continuous-time model such as boundedness and positivity. But for an important class of models which include diffusion and reaction–diffusion systems that appear in a number of application domains including epidemiology, ecology, and finance, recently introduced NSFD schemes do not guarantee first-order temporal accuracy or consistency. In this paper, we first show this for a reaction–diffusion epidemic model. We then propose an alternative NSFD scheme that guarantees first-order accuracy in time and second-order accuracy in space whilst preserving positivity of the solution. Stability and consistency analyses of the proposed scheme are then presented. To demonstrate the performance of the proposed scheme we show a comparison with the existing NSFD approach for three examples which confirm the superiority of our proposed approach.

Keywords: Nonstandard finite difference; Reaction–diffusion equation; Positivity constraint; Von Neumann stability; Consistency analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922011080
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922011080

DOI: 10.1016/j.chaos.2022.112929

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922011080