Stability analysis and system properties of Nipah virus transmission: A fractional calculus case study
Dumitru Baleanu,
Parisa Shekari,
Leila Torkzadeh,
Hassan Ranjbar,
Amin Jajarmi and
Kazem Nouri
Chaos, Solitons & Fractals, 2023, vol. 166, issue C
Abstract:
In this paper, we establish a Caputo-type fractional model to study the Nipah virus transmission dynamics. The model describes the impact of unsafe contact with an infectious corpse as a possible way to transmit this virus. The corresponding area to the system properties, including the positivity and boundedness of the solution, is explored by using the generalized fractional mean value theorem. Also, we investigate sufficient conditions for the local and global stability of the disease-free and the endemic steady-states based on the basic reproduction number R0. To show these important stability features, we employ fractional Routh–Hurwitz criterion and LaSalle’s invariability principle. For the implementation of this epidemic model, we also use the Adams–Bashforth–Moulton numerical method in a fractional sense. Finally, in addition to compare the fractional and classical results, as one of the main goals of this research, we demonstrate the usefulness of minimal unsafe touch with the infectious corpse. Simulation and comparative results verify the theoretical discussions.
Keywords: Fractional derivative; SIRD model; Nipah virus infection; Equilibrium points; Adams–Bashforth–Moulton method (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922011699
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922011699
DOI: 10.1016/j.chaos.2022.112990
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().