Competition of alliances in a cyclically dominant eight-species population
Junpyo Park,
Xiaojie Chen and
Attila Szolnoki
Chaos, Solitons & Fractals, 2023, vol. 166, issue C
Abstract:
In a diverse population, where many species are present, competitors can fight for surviving at individual and collective levels. In particular, species, which would beat each other individually, may form a specific alliance that ensures them stable coexistence against the invasion of an external species. Our principal goal is to identify those general features of a formation which determine its vitality. Therefore, we here study a traditional Lotka–Volterra model of eight-species where two four-species cycles can fight for space. Beside these formations, there are other solutions which may emerge when invasion rates are varied. The complete range of parameters is explored and we find that in most of the cases those alliances prevail which are formed by equally strong members. Interestingly, there are regions where the symmetry is broken and the system is dominated by a solution formed by seven species. Our work also highlights that serious finite-size effects may emerge which prevent observing the valid solution in a small system.
Keywords: Cyclic dominance; Alliances; Competition (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922011833
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922011833
DOI: 10.1016/j.chaos.2022.113004
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().