Complex dynamics and impulsive control of a chemostat model under the ratio threshold policy
Wenjie Li,
Jinchen Ji,
Lihong Huang and
Ying Zhang
Chaos, Solitons & Fractals, 2023, vol. 167, issue C
Abstract:
In this paper, we study the periodic solution and global stability of a chemostat model under impulsive control. First, we investigate the positivity and boundedness of the solution of the controlled system. Second, we find the periodic solution of the controlled system by employing the Poincare map and Brouwer’s fixed-point theorem. Furthermore, we obtain a sufficient condition which allows the existence of orbitally stable order-k periodic solutions (k=1,2) by using the comparison method and the vector field analysis. We find that the controlled system exists a unique positive equilibrium point that is globally asymptotically stable (GAS) under some conditions. Finally, we provide two numerical examples to verify the correctness of the theoretical results.
Keywords: Chemostat model; Impulsive control; Brouwer’s fixed-point theorem; Poincare map; Periodic solution; Globally stable (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922012565
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077922012565
DOI: 10.1016/j.chaos.2022.113077
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().